arXiv Analytics

Sign in

arXiv:1808.09736 [cond-mat.mes-hall]AbstractReferencesReviewsResources

Fast spin exchange between two distant quantum dots

Filip K. Malinowski, Frederico Martins, Thomas B. Smith, Stephen D. Bartlett, Andrew C. Doherty, Peter D. Nissen, Saeed Fallahi, Geoffrey C. Gardner, Michael J. Manfra, Charles M. Marcus, Ferdinand Kuemmeth

Published 2018-08-29Version 1

The Heisenberg exchange interaction between neighboring quantum dots allows precise voltage control over spin dynamics, due to the ability to precisely control the overlap of orbital wavefunctions by gate electrodes. This allows the study of fundamental electronic phenomena and finds applications in quantum information processing. Although spin-based quantum circuits based on short-range exchange interactions are possible, the development of scalable, longer-range coupling schemes constitutes a critical challenge within the spin-qubit community. Approaches based on capacitative coupling and cavity-mediated interactions effectively couple spin qubits to the charge degree of freedom, making them susceptible to electrically-induced decoherence. The alternative is to extend the range of the Heisenberg exchange interaction by means of a quantum mediator. Here, we show that a multielectron quantum dot with 50-100 electrons serves as an excellent mediator, preserving speed and coherence of the resulting spin-spin coupling while providing several functionalities that are of practical importance. These include speed (mediated two-qubit rates up to several gigahertz), distance (of order of a micrometer), voltage control, possibility of sweet spot operation (reducing susceptibility to charge noise), and reversal of the interaction sign (useful for dynamical decoupling from noise).

Comments: 6 pages including 4 figures, plus 8 supplementary pages including 5 supplementary figures
Related articles: Most relevant | Search more
arXiv:1712.08569 [cond-mat.mes-hall] (Published 2017-12-22)
Cavity-mediated coherent coupling between distant quantum dots
arXiv:2012.09507 [cond-mat.mes-hall] (Published 2020-12-17)
Entangling nuclear spins in distant quantum dots via an electron bus
arXiv:1107.3886 [cond-mat.mes-hall] (Published 2011-07-20)
On-demand single-electron transfer between distant quantum dots