arXiv Analytics

Sign in

arXiv:1808.04757 [math.CO]AbstractReferencesReviewsResources

Addressing Johnson graphs, complete multipartite graphs, odd cycles and other graphs

Sebastian M. Cioabă, Brandon D. Gilbert, Jack H. Koolen, Brendan D. McKay

Published 2018-08-14Version 1

Graham and Pollak showed that the vertices of any graph $G$ can be addressed with $N$-tuples of three symbols, such that the distance between any two vertices may be easily determined from their addresses. An addressing is optimal if its length $N$ is minimum possible. In this paper, we determine an addressing of length $k(n-k)$ for the Johnson graphs $J(n,k)$ and we show that our addressing is optimal when $k=1$ or when $k=2, n=4,5,6$, but not when $n=6$ and $k=3$. We study the addressing problem as well as a variation of it in which the alphabet used has more than three symbols, for other graphs such as complete multipartite graphs and odd cycles. We also present computations describing the distribution of the minimum length of addressings for connected graphs with up to $10$ vertices and make a conjecture regarding optimal addressings for random graphs.

Related articles: Most relevant | Search more
arXiv:0707.4499 [math.CO] (Published 2007-07-30, updated 2007-11-22)
A spectral condition for odd cycles in graphs
arXiv:1310.6766 [math.CO] (Published 2013-10-24)
Extremal numbers for odd cycles
arXiv:1307.5931 [math.CO] (Published 2013-07-23)
Complete multipartite graphs are determined by their distance spectra