arXiv:1808.01685 [math.DG]AbstractReferencesReviewsResources
Sharp estimate of global Coulomb gauge
Published 2018-08-05Version 1
Let $A$ be a $W^{1,2}$-connection on a principle $\text{SU}(2)$-bundle $P$ over a compact $4$-manifold $M$ whose curvature $F_A$ satisfies $\|F_A\|_{L^2(M)}\le \Lambda$. Our main result is the existence of a global section $\sigma: M\to P$ with finite singularities on $M$ such that the connection form $\sigma^*A$ satisfies the Coulomb equation $d^*(\sigma^*A)=0$ and admits a sharp estimate $\|\sigma^*A\|_{\mathcal{L}^{4,\infty}(M)}\le C(M,\Lambda)$. Here $\mathcal{L}^{4,\infty}$ is a new function space we introduce in this paper that satisfies $L^4(M)\subsetneq \mathcal{L}^{4,\infty}(M)\subsetneq L^{4-\epsilon}(M)$ for all $\epsilon>0$.
Related articles: Most relevant | Search more
arXiv:2406.05503 [math.DG] (Published 2024-06-08)
Bottom of the spectrum for manifolds foliated by minimal leaves
Sharp estimate on the first eigenvalue of the p-Laplacian on compact manifold with nonnegative Ricci curvature
arXiv:math/0703098 [math.DG] (Published 2007-03-03)
A sharp estimate for the bottom of the spectrum of the Laplacian on Kähler manifolds