arXiv Analytics

Sign in

arXiv:1808.01548 [math.CO]AbstractReferencesReviewsResources

On the number of edges in some graphs

Chunhui Lai

Published 2018-08-05Version 1

We prove that $\lim\inf_{n \to \infty} {f(n)-n \over \sqrt n} \geq \sqrt {2 + \frac{40}{99}},$ which is better than the previous bounds $\sqrt 2$ [Y. Shi, Discrete Math. 71(1988), 57-71], $\sqrt {2 + \frac{7654}{19071}}$ [C. Lai, Discrete Appl. Math. 232 (2017), 226-229]. We show that $\liminf_{n \rightarrow \infty} {g(n,m)-n\over \sqrt \frac{n}{m}} > \sqrt {2.444},$ for all even integer $m$.

Comments: 9 pages
Categories: math.CO
Subjects: 05C38, 05C35
Related articles: Most relevant | Search more
arXiv:1612.06021 [math.CO] (Published 2016-12-19)
On the size of graphs without repeated cycle lengths
arXiv:2408.11644 [math.CO] (Published 2024-08-21)
The saturation number for unions of four cliques
arXiv:2404.12204 [math.CO] (Published 2024-04-18)
Minimum saturated graphs for unions of cliques