arXiv Analytics

Sign in

arXiv:1807.09086 [math.CO]AbstractReferencesReviewsResources

The Möbius function of ${\rm PSU}(3,2^{2^n})$

Giovanni Zini

Published 2018-07-24Version 1

Let $G$ be the simple group ${\rm PSU}(2,2^{2^n})$, $n>0$. For any subgroup $H$ of $G$, we compute the M\"obius function $\mu_L(H,G)$ of $H$ in the subgroup lattice $L$ of $G$, and the M\"obius function $\mu_{\bar L}([H],[G])$ of $[H]$ in the poset $\bar L$ of conjugacy classes of subgroups of $G$. For any prime $p$, we provide the Euler characteristic of the order complex of the poset of $p$-subgroups of $G$.

Related articles: Most relevant | Search more
arXiv:1606.00011 [math.CO] (Published 2016-05-31)
Frankl's Conjecture for subgroup lattices
arXiv:0708.3539 [math.CO] (Published 2007-08-27, updated 2008-06-06)
An EL-labeling of the subgroup lattice
arXiv:2210.12483 [math.CO] (Published 2022-10-22)
The Euler characteristic, $q$-matroids, and a Möbius function