arXiv Analytics

Sign in

arXiv:1807.04383 [math.NT]AbstractReferencesReviewsResources

Characterization of digital $(0,m,3)$-nets and digital $(0,2)$-sequences in base $2$

Roswitha Hofer, Kosuke Suzuki

Published 2018-07-12Version 1

We give a characterization of all matrices $A,B,C \in \mathbb{F}_{2}^{m \times m}$ which generate a $(0,m,3)$-net in base $2$ and a characterization of all matrices $B,C\in\mathbb{F}_{2}^{\mathbb{N}\times\mathbb{N}}$ which generate a $(0,2)$-sequence in base $2$.

Comments: 7 pages
Categories: math.NT
Subjects: 11K31, 11K38
Keywords: characterization
Related articles: Most relevant | Search more
arXiv:1801.02152 [math.NT] (Published 2018-01-07)
Characterization of matrices $B$ such that $(I,B,B^2)$ generates a digital net with $t$-value zero
arXiv:2307.00770 [math.NT] (Published 2023-07-03)
A characterization of prime $v$-palindromes
arXiv:0710.0708 [math.NT] (Published 2007-10-03)
A characterization of all equilateral triangles in \Bbb Z^3