arXiv:1807.04347 [math.FA]AbstractReferencesReviewsResources
Examples of de Branges-Rovnyak spaces generated by nonextreme functions
Bartosz Łanucha, Maria T. Nowak
Published 2018-07-11Version 1
We describe de Branges-Rovnyak spaces $\mathcal H (b_{\alpha})$, $\alpha>0$, where the function $b_{\alpha}$ is not extreme in the unit ball of $H^{\infty}$ on the unit disk $\mathbb D$, defined by the equality $b_{\alpha}(z)/a_{\alpha}(z)=(1-z)^{-\alpha}$, $z\in\mathbb D$, where $a_{\alpha}$ is the outer function such that $a_{\alpha}(0)>0$ and $|a_{\alpha}|^2+|b_{\alpha}|^2= 1$ a.e. on $\partial \mathbb D$.
Categories: math.FA
Related articles: Most relevant | Search more
arXiv:1411.4174 [math.FA] (Published 2014-11-15)
A short introduction to de Branges--Rovnyak spaces
arXiv:2310.03604 [math.FA] (Published 2023-10-05)
Embedding model and de Branges-Rovnyak spaces in Dirichlet spaces
arXiv:2002.12672 [math.FA] (Published 2020-02-28)
On kernels of Toeplitz operators