arXiv Analytics

Sign in

arXiv:1807.00032 [math.CO]AbstractReferencesReviewsResources

A degree condition for diameter two orientability of graphs

Éva Czabarka, Peter Dankelmann, László A. Székely

Published 2018-06-29Version 1

For $n \in \mathbb{N}$ let $\delta_n$ be the smallest value such that every graph of order $n$ and minimum degree at least $\delta_n$ admits an orientation of diameter two. We show that $\delta_n=\frac{n}{2} + \Theta(\ln n)$.

Categories: math.CO
Subjects: 05C12, 05C20, 05C35
Related articles: Most relevant | Search more
arXiv:1101.4973 [math.CO] (Published 2011-01-25, updated 2012-01-02)
A degree condition for cycles of maximum length in bipartite digraphs
arXiv:2009.03032 [math.CO] (Published 2020-09-07)
A Degree Condition for a Graph to Have All $(a,b)$-Factors
arXiv:2002.06795 [math.CO] (Published 2020-02-17)
On the Turán number of 1-subdivision of $K_{3,t}$