arXiv Analytics

Sign in

arXiv:1806.10188 [math.OC]AbstractReferencesReviewsResources

A Tight Convergence Analysis for Stochastic Gradient Descent with Delayed Updates

Yossi Arjevani, Ohad Shamir, Nathan Srebro

Published 2018-06-26Version 1

We provide tight finite-time convergence bounds for gradient descent and stochastic gradient descent on quadratic functions, when the gradients are delayed and reflect iterates from $\tau$ rounds ago. First, we show that without stochastic noise, delays strongly affect the attainable optimization error: In fact, the error can be as bad as non-delayed gradient descent ran on only $1/\tau$ of the gradients. In sharp contrast, we quantify how stochastic noise makes the effect of delays negligible, improving on previous work which only showed this phenomenon asymptotically or for much smaller delays. Also, in the context of distributed optimization, the results indicate that the performance of gradient descent with delays is competitive with synchronous approaches such as mini-batching. Our results are based on a novel technique for analyzing convergence of optimization algorithms using generating functions.

Related articles: Most relevant | Search more
arXiv:1605.04131 [math.OC] (Published 2016-05-13)
Barzilai-Borwein Step Size for Stochastic Gradient Descent
arXiv:1908.07023 [math.OC] (Published 2019-08-19)
Second-Order Guarantees of Stochastic Gradient Descent in Non-Convex Optimization
arXiv:2110.11442 [math.OC] (Published 2021-10-21, updated 2022-01-30)
Towards Noise-adaptive, Problem-adaptive (Accelerated) Stochastic Gradient Descent