arXiv Analytics

Sign in

arXiv:1806.04679 [math.NT]AbstractReferencesReviewsResources

A new proof of the duality of multiple zeta values and its generalizations

Shin-ichiro Seki, Shuji Yamamoto

Published 2018-06-12Version 1

We give a new proof of the duality of multiple zeta values, which makes no use of the iterated integrals. The same method is also applicable to Ohno's relation for ($q$-)multiple zeta values.

Comments: 4 pages
Categories: math.NT
Subjects: 11M32, 11B65
Related articles: Most relevant | Search more
arXiv:1110.4875 [math.NT] (Published 2011-10-21, updated 2022-06-02)
On generalizations of the sum formula for multiple zeta values
arXiv:1210.1818 [math.NT] (Published 2012-10-05)
Polylogarithms and multiple zeta values from free Rota-Baxter algebras
arXiv:1205.7051 [math.NT] (Published 2012-05-31, updated 2016-03-17)
On Multiple Zeta Values of Even Arguments