arXiv:1804.07952 [math.LO]AbstractReferencesReviewsResources
Some nonstandard equivalences in Reverse Mathematics
Published 2018-04-21Version 1
Reverse Mathematics (RM) is a program in the foundations of mathematics founded by Friedman and developed extensively by Simpson. The aim of RM is finding the minimal axioms needed to prove a theorem of ordinary (i.e. non-set theoretical) mathematics. In the majority of cases, one also obtains an equivalence between the theorem and its minimal axioms. This equivalence is established in a weak logical system called the base theory; four prominent axioms which boast lots of such equivalences are dubbed mathematically natural by Simpson. In this paper, we show that a number of axioms from Nonstandard Analysis are equivalent to theorems of ordinary mathematics not involving Nonstandard Analysis. These equivalences are proved in a base theory recently introduced by van den Berg and the author. Our results combined with Simpson's criterion for naturalness suggest the controversial point that Nonstandard Analysis is actually mathematically natural.