arXiv Analytics

Sign in

arXiv:1804.04891 [math.NT]AbstractReferencesReviewsResources

Digital nets in dimension two with the optimal order of $L_p$ discrepancy

Ralph Kritzinger, Friedrich Pillichshammer

Published 2018-04-13Version 1

We study the $L_p$ discrepancy of two-dimensional digital nets for finite $p$. In the year 2001 Larcher and Pillichshammer identified a class of digital nets for which the symmetrized version in the sense of Davenport has $L_2$ discrepancy of the order $\sqrt{\log N}/N$, which is best possible due to the celebrated result of Roth. However, it remained open whether this discrepancy bound also holds for the original digital nets without any modification. In the present paper we identify nets from the above mentioned class for which the symmetrization is not necessary in order to achieve the optimal order of $L_p$ discrepancy for all $p \in [1,\infty)$. Our findings are in the spirit of a paper by Bilyk from 2013, who considered the $L_2$ discrepancy of lattices consisting of the elements $(k/N,\{k \alpha\})$ for $k=0,1,\ldots,N-1$, and who gave Diophantine properties of $\alpha$ which guarantee the optimal order of $L_2$ discrepancy.

Related articles: Most relevant | Search more
arXiv:2109.05781 [math.NT] (Published 2021-09-13)
Point sets with optimal order of extreme and periodic discrepancy
arXiv:1410.4315 [math.NT] (Published 2014-10-16)
Optimal order of $L_p$-discrepancy of digit shifted Hammersley point sets in dimension 2
arXiv:1511.04937 [math.NT] (Published 2015-11-16)
$L_2$ discrepancy of symmetrized generalized Hammersley point sets in base $b$