arXiv:1804.03049 [math.GR]AbstractReferencesReviewsResources
Growth in linear algebraic groups and permutation groups: towards a unified perspective
Published 2018-04-09, updated 2018-09-14Version 2
By now, we have a product theorem in every finite simple group $G$ of Lie type, with the strength of the bound depending only in the rank of $G$. Such theorems have numerous consequences: bounds on the diameters of Cayley graphs, spectral gaps, and so forth. For the alternating group Alt_n, we have a quasipolylogarithmic diameter bound (Helfgott-Seress 2014), but it does not rest on a product theorem. We shall revisit the proof of the bound for Alt_n, bringing it closer to the proof for linear algebraic groups, and making some common themes clearer. As a result, we will show how to prove a product theorem for Alt_n -- not of full strength, as that would be impossible, but strong enough to imply the diameter bound.