arXiv Analytics

Sign in

arXiv:1803.06992 [stat.ML]AbstractReferencesReviewsResources

Estimating the intrinsic dimension of datasets by a minimal neighborhood information

Elena Facco, Maria d'Errico, Alex Rodriguez, Alessandro Laio

Published 2018-03-19Version 1

Analyzing large volumes of high-dimensional data is an issue of fundamental importance in data science, molecular simulations and beyond. Several approaches work on the assumption that the important content of a dataset belongs to a manifold whose Intrinsic Dimension (ID) is much lower than the crude large number of coordinates. Such manifold is generally twisted and curved, in addition points on it will be non-uniformly distributed: two factors that make the identification of the ID and its exploitation really hard. Here we propose a new ID estimator using only the distance of the first and the second nearest neighbor of each point in the sample. This extreme minimality enables us to reduce the effects of curvature, of density variation, and the resulting computational cost. The ID estimator is theoretically exact in uniformly distributed datasets, and provides consistent measures in general. When used in combination with block analysis, it allows discriminating the relevant dimensions as a function of the block size. This allows estimating the ID even when the data lie on a manifold perturbed by a high-dimensional noise, a situation often encountered in real world data sets. We demonstrate the usefulness of the approach on molecular simulations and image analysis.

Related articles: Most relevant | Search more
arXiv:1205.2609 [stat.ML] (Published 2012-05-09)
Which Spatial Partition Trees are Adaptive to Intrinsic Dimension?
arXiv:1602.00216 [stat.ML] (Published 2016-01-31)
Feature Selection for Regression Problems Based on the Morisita Estimator of Intrinsic Dimension: Concept and Case Studies
arXiv:2409.12805 [stat.ML] (Published 2024-09-19)
Robust estimation of the intrinsic dimension of data sets with quantum cognition machine learning