arXiv Analytics

Sign in

arXiv:1803.06477 [math.AT]AbstractReferencesReviewsResources

On the homotopy type of $\mathrm{Sp}(n)$ gauge groups

Daisuke Kishimoto, Akira Kono

Published 2018-03-17Version 1

Let $\mathcal{G}_{k,n}$ be the gauge group of the principal $\mathrm{Sp}(n)$-bundle over $S^4$ corresponding to $k\in\mathbb{Z}\cong\pi_3(\mathrm{Sp}(n))$. We refine the result of Sutherland on the homotopy types of $\mathcal{G}_{k,n}$ and relate it with the order of a certain Samelson product in $\mathrm{Sp}(n)$. Then we classify the $p$-local homotopy types of $\mathcal{G}_{k,n}$ for $(p-1)^2+1\ge 2n$.

Comments: 9 pages
Categories: math.AT
Related articles: Most relevant | Search more
arXiv:math/0511404 [math.AT] (Published 2005-11-16, updated 2006-02-01)
The Samelson Product and Rational Homotopy for Gauge Groups
arXiv:2204.08867 [math.AT] (Published 2022-04-19)
The homotopy types of $Sp(n)$-gauge groups over $S^{4m}$
arXiv:0811.0771 [math.AT] (Published 2008-11-05, updated 2009-08-19)
Continuous trace C*-algebras, gauge groups and rationalization