arXiv:1803.06250 [math.AP]AbstractReferencesReviewsResources
On the nonlinear wave equation with time periodic potential
Vesselin Petkov Nikolay Tzvetkov
Published 2018-03-16Version 1
It is known that for some time periodic potentials $q(t, x) \geq 0$ having compact support with respect to $x$ some solutions of the Cauchy problem for the wave equation $\partial_t^2 u - \Delta_x u + q(t,x)u = 0$ have exponentially increasing energy as $t \to \infty$. We show that if one adds a nonlinear defocusing interaction $|u|^ru, 2\leq r < 4,$ then the solution of the nonlinear wave equation exists for all $t \in {\mathbb R}$ and its energy is polynomially bounded as $t \to \infty$ for every choice of $q$. Moreover, we prove that the zero solution of the nonlinear wave equation is instable if the corresponding linear equation has the property mentioned above.