arXiv Analytics

Sign in

arXiv:1803.01650 [cond-mat.stat-mech]AbstractReferencesReviewsResources

Off-Diagonal Observable Elements from Random Matrix Theory: Distributions, Fluctuations, and Eigenstate Thermalization

Charlie Nation, Diego Porras

Published 2018-03-05Version 1

We derive the Eigenstate Thermalization Hypothesis (ETH) from a random matrix Hamiltonian by extending the model introduced by J. M. Deutsch [Phys. Rev. A 43, 2046 (1991)]. We approximate the coupling between a subsystem and a many-body environment by means of a random Gaussian matrix. We show that a common assumption in the analysis of quantum chaotic systems, namely the treatment of eigenstates as independent random vectors, leads to inconsistent results. However, a consistent approach to the ETH can be developed by introducing an interaction between random wave-vectors that arises as a result of the orthonormality condition. This approach leads to a consistent form for off-diagonal matrix elements of observables. From there we obtain the scaling of time-averaged fluctuations with system size for which we calculate an analytic form in terms of the Inverse Participation Ratio. The analytic results are compared to exact diagonalizations of a quantum spin chain for different physical observables in multiple parameter regimes.

Related articles: Most relevant | Search more
arXiv:cond-mat/0201195 (Published 2002-01-12)
Empirical Regularities in Distributions of Individual Consumption Expenditure
arXiv:1105.5456 [cond-mat.stat-mech] (Published 2011-05-27, updated 2012-02-08)
Effects of error on fluctuations under feedback control
arXiv:0705.0148 [cond-mat.stat-mech] (Published 2007-05-01, updated 2007-07-20)
Superstatistics, thermodynamics, and fluctuations