arXiv Analytics

Sign in

arXiv:1803.00669 [math.RT]AbstractReferencesReviewsResources

Vertices of modules and decomposition numbers of $C_2 \wr S_n$

Jasdeep Singh Kochhar

Published 2018-03-02Version 1

Given $n \in \mathbf{N},$ consider the imprimitive wreath product $C_2 \wr S_n.$ We study the structure of modules whose ordinary characters form an involution model of $FC_2 \wr S_n,$ where $F$ is a field of odd prime characteristic. We classify the vertices of these modules in this case. We then use this classification of the vertices to describe certain columns of the decomposition matrix of $C_2 \wr S_n.$

Related articles: Most relevant | Search more
arXiv:math/0510457 [math.RT] (Published 2005-10-21)
On decomposition numbers of the cyclotomic q-Schur algebras
arXiv:0707.1753 [math.RT] (Published 2007-07-12)
On decomposition numbers with Jantzen filtration of cyclotomic $q$-Schur algebras
arXiv:2401.05816 [math.RT] (Published 2024-01-11)
Decomposition numbers for weight 3 blocks of Iwahori--Hecke algebras of type B