arXiv Analytics

Sign in

arXiv:1802.05378 [astro-ph.GA]AbstractReferencesReviewsResources

The properties of Planck Galactic cold clumps in the L1495 dark cloud

Mengyao Tang, Tie Liu, Sheng-Li Qin, Kee-Tae Kim, Yuefang Wu, Ken'ichi Tatematsu, Jinghua Yuan, Ke Wang, Harriet Parsons, Patrick M. Koch, Patricio Sanhueza, D. Ward-Thompson, L. Viktor Tóth, Archana Soam, Chang Won Lee, David Eden, James Di Francesco, Jonathan Rawlings, Mark G. Rawlings, Julien Montillaud, Chuan-Peng Zhang, M. R. Cunningham

Published 2018-02-15Version 1

Planck Galactic Cold Clumps (PGCCs) possibly represent the early stages of star formation. To understand better the properties of PGCCs, we studied 16 PGCCs in the L1495 cloud with molecular lines and continuum data from Herschel, JCMT/SCUBA-2 and the PMO 13.7 m telescope. Thirty dense cores were identified in 16 PGCCs from 2-D Gaussian fitting. The dense cores have dust temperatures of $T_{\rm d}$ = 11-14 K, and H$_{2}$ column densities of $N_{\rm H_{2}}$ = 0.36-2.5$\times10^{22}$ cm$^{-2}$. We found that not all PGCCs contain prestellar objects. In general, the dense cores in PGCCs are usually at their earliest evolutionary stages. All the dense cores have non-thermal velocity dispersions larger than the thermal velocity dispersions from molecular line data, suggesting that the dense cores may be turbulence-dominated. We have calculated the virial parameter $\alpha$ and found that 14 of the dense cores have $\alpha$ $<$ 2, while 16 of the dense cores have $\alpha$ $>$ 2. This suggests that some of the dense cores are not bound in the absence of external pressure and magnetic fields. The column density profiles of dense cores were fitted. The sizes of the flat regions and core radii decrease with the evolution of dense cores. CO depletion was found to occur in all the dense cores, but is more significant in prestellar core candidates than in protostellar or starless cores. The protostellar cores inside the PGCCs are still at a very early evolutionary stage, sharing similar physical and chemical properties with the prestellar core candidates.

Related articles: Most relevant | Search more
arXiv:1801.09680 [astro-ph.GA] (Published 2018-01-29)
On the spatial distributions of dense cores in Orion B
arXiv:2106.03897 [astro-ph.GA] (Published 2021-06-07)
TRAO Survey of the nearby filamentary molecular clouds, the universal nursery of stars (TRAO FUNS). II. Filaments and Dense cores in IC 5146
arXiv:2010.11371 [astro-ph.GA] (Published 2020-10-22)
Planck Galactic Cold Clumps in Two Regions: the First Quadrant and the Anti-Center Direction Region
Chao Zhang et al.