arXiv Analytics

Sign in

arXiv:1802.00907 [math.RT]AbstractReferencesReviewsResources

Cuspidal integrals and subseries for $\mathrm{SL}(3)/K_ε$

Mogens Flensted-Jensen, Job J. Kuit

Published 2018-02-03Version 1

We show that for the symmetric spaces $\mathrm{SL}(3,\mathbb{R})/\mathrm{SO}(1,2)_{e}$ and $\mathrm{SL}(3,\mathbb{C})/\mathrm{SU}(1,2)$ the cuspidal integrals are absolutely convergent. We further determine the behavior of the corresponding Radon transforms and relate the kernels of the Radon transforms to the different series of representations occurring in the Plancherel decomposition of these spaces. Finally we show that for the symmetric space $\mathrm{SL}(3,\mathbb{H})/\mathrm{Sp}(1,2)$ the cuspidal integrals are not convergent for all Schwartz functions.

Related articles: Most relevant | Search more
arXiv:1802.01094 [math.RT] (Published 2018-02-04)
Tempered Manifolds and Schwartz Functions on them
arXiv:1709.07764 [math.RT] (Published 2017-09-22)
Approximation of $L^2$-analytic torsion for arithmetic quotients of the symmetric space $\mathrm{SL}(n,\mathbb{R})/\mathrm{SO}(n)$
arXiv:2204.06069 [math.RT] (Published 2022-04-12)
A spectral expansion for the symmetric space $\mathrm{GL}_n(E)/\mathrm{GL}_n(F)$