arXiv Analytics

Sign in

arXiv:1801.09348 [math.NA]AbstractReferencesReviewsResources

Strong Approximation of Stochastic Allen-Cahn Equation with White Noise

Zhihui Liu, Zhonghua Qiao

Published 2018-01-29Version 1

We establish an optimal strong convergence rate of a fully discrete numerical scheme for second order parabolic stochastic partial differential equations with monotone drifts, including the stochastic Allen-Cahn equation, driven by an additive space-time white noise. Our first step is to transform the original stochastic equation into an equivalent random equation whose solution possesses more regularity than the original one. Then we use the backward Euler in time and spectral Galerkin in space to fully discretize this random equation. By the monotonicity, in combination with the factorization method and stochastic calculus in martingale-type 2 Banach spaces, we derive a uniform $\mathbb L^\infty$-estimation and a H\"older-type regularity for both stochastic and random equations. Finally, the strong convergence rate of the fully discrete scheme is obtained. Several numerical experiments are carried out to verify the theoretical result.

Related articles: Most relevant | Search more
arXiv:2406.10582 [math.NA] (Published 2024-06-15)
Strong convergence rates for long-time approximations of SDEs with non-globally Lipschitz continuous coefficients
arXiv:2501.04618 [math.NA] (Published 2025-01-08)
Strong error estimates for a fully discrete SAV scheme for the stochastic Allen--Cahn equation with multiplicative noise
arXiv:1510.03684 [math.NA] (Published 2015-10-13)
On the discretization in time of the stochastic Allen-Cahn equation