arXiv Analytics

Sign in

arXiv:1801.08475 [math.NT]AbstractReferencesReviewsResources

Explicit formula for the average of Goldbach and prime tuples representations

Marco Cantarini

Published 2018-01-25Version 1

Let $\Lambda\left(n\right)$ be the Von Mangoldt function, let \[ r_{G}\left(n\right)=\underset{{\scriptstyle m_{1}+m_{2}=n}}{\sum_{m_{1},m_{2}\leq n}}\Lambda\left(m_{1}\right)\Lambda\left(m_{2}\right), \] \[ r_{PT}\left(N,h\right)=\sum_{n=0}^{N}\Lambda\left(n\right)\Lambda\left(n+h\right),\,h\in\mathbb{N} \] be the counting function of the Goldbach numbers and the counting function of the prime tuples, respectively. Let $N>2$ be an integer. We will find the explicit formulae for the averages of $r_{G}\left(n\right)$ and $r_{PT}\left(N,h\right)$ in terms of elementary functions, the incomplete Beta function $B_{z}\left(a,b\right)$, series over $\rho$ that, with or without subscript, runs over the non-trivial zeros of the Riemann Zeta function and the Dilogarithm function. We will also prove the explicit formulae in an asymptotic form and a truncated formula for the average of $r_{G}\left(n\right)$. Some observation about these formulae and the average with Ces\`aro weight \[ \frac{1}{\Gamma\left(k+1\right)}\sum_{n\leq N}r_{G}\left(n\right)\left(N-n\right)^{k},\,k>0 \] are included.

Related articles: Most relevant | Search more
arXiv:1306.5322 [math.NT] (Published 2013-06-22, updated 2015-11-09)
Explicit formulae for primes in arithmetic progressions, I
arXiv:math/9810169 [math.NT] (Published 1998-10-29, updated 1998-11-22)
The Explicit Formula in simple terms
arXiv:1101.4557 [math.NT] (Published 2011-01-24, updated 2012-05-05)
On the counting function of sets with even partition functions