arXiv:1801.06251 [math.CA]AbstractReferencesReviewsResources
Atomic and Littlewood-Paley Characterizations of Anisotropic Mixed-Norm Hardy Spaces and Their Applications
Long Huang, Jun Liu, Dachun Yang, Wen Yuan
Published 2018-01-18Version 1
Let $\vec{a}:=(a_1,\ldots,a_n)\in[1,\infty)^n$, $\vec{p}:=(p_1,\ldots,p_n)\in(0,\infty)^n$ and $H_{\vec{a}}^{\vec{p}}(\mathbb{R}^n)$ be the anisotropic mixed-norm Hardy space associated with $\vec{a}$ defined via the non-tangential grand maximal function. In this article, via first establishing a Calder\'{o}n-Zygmund decomposition and a discrete Calder\'{o}n reproducing formula, the authors then characterize $H_{\vec{a}}^{\vec{p}}(\mathbb{R}^n)$, respectively, by means of atoms, the Lusin area function, the Littlewood-Paley $g$-function or $g_{\lambda}^\ast$-function. The obtained Littlewood-Paley $g$-function characterization of $H_{\vec{a}}^{\vec{p}}(\mathbb{R}^n)$ coincidentally confirms a conjecture proposed by Hart et al. [Trans. Amer. Math. Soc. (2017), DOI: 10. 1090/tran/7312]. Applying the aforementioned Calder\'{o}n-Zygmund decomposition as well as the atomic characterization of $H_{\vec{a}}^{\vec{p}}(\mathbb{R}^n)$, the authors establish a finite atomic characterization of $H_{\vec{a}}^{\vec{p}}(\mathbb{R}^n)$, which further induces a criterion on the boundedness of sublinear operators from $H_{\vec{a}}^{\vec{p}}(\mathbb{R}^n)$ into a quasi-Banach space. Then, applying this criterion, the authors obtain the boundedness of anisotropic convolutional $\delta$-type and non-convolutional $\bz$-order Calder\'{o}n-Zygmund operators on $H_{\vec{a}}^{\vec{p}}(\mathbb{R}^n)$. All these results are new even for the isotropic mixed-norm Hardy spaces on $\mathbb{R}^n$.