arXiv:1801.06034 [math.CO]AbstractReferencesReviewsResources
Boolean degree 1 functions on some classical association schemes
Yuval Filmus, Ferdinand Ihringer
Published 2018-01-18Version 1
We investigate Boolean degree 1 functions for several classical association schemes, including Johnson graphs, Grassmann graphs, graphs from polar spaces, and bilinear forms graphs, as well as some other domains such as multislices (Young subgroups of the symmetric group). In some settings, Boolean degree 1 functions are also known as \textit{completely regular strength 0 codes}, \textit{Cameron--Liebler line classes}, and \textit{tight sets}. We classify all Boolean degree $1$ functions on the multislice. On the Grassmann scheme $J_q(n, k)$ we show that all Boolean degree $1$ functions are trivial for $n \geq 5$, $k, n-k \geq 2$ and $q \in \{ 2, 3, 4 \}$, and that for general $q$, the problem can be reduced to classifying all Boolean degree $1$ functions on $J_q(n, 2)$. We also consider polar spaces and the bilinear forms graphs, giving evidence that all Boolean degree $1$ functions are trivial for appropriate choices of the parameters.