arXiv Analytics

Sign in

arXiv:1801.03653 [math.NT]AbstractReferencesReviewsResources

Sums of gcd-sum functions with weights concerning the Gamma function and Bernoulli polynomials

Isao Kiuchi, Sumaia Saad Eddin

Published 2018-01-11Version 1

In this paper, we establish the following two identities involving the Gamma function and Bernoulli polynomials, namely $$ \sum_{k\leq x}\frac{1}{k^s} \sum_{j=1}^{k^s}\log\Gamma\left(\frac{j}{k^s}\right) \sum_{\substack{d|k d^{s}|j}}(f*\mu)(d)\quad {\rm and }\quad \sum_{k\leq x}\frac{1}{k^s}\sum_{j=0}^{k^{s}-1} B_{m}\sum_{\substack{d|k d^{s}|j}} (f*\mu)(d) $$ with any fixed integer $s> 1$ and any arithmetical function $f$. We give asymptotic formulas for the above with various multiplicative functions $f$. We also consider several formulas of Dirichlet series having coefficients $\gcd$-sum functions with weights concerning the Gamma function and Bernoulli polynomials.

Related articles: Most relevant | Search more
arXiv:1706.09804 [math.NT] (Published 2017-06-29)
Denominators of Bernoulli polynomials
arXiv:1811.06022 [math.NT] (Published 2018-11-14)
On the multivariable generalization of Anderson-Apostol sums
arXiv:1712.05503 [math.NT] (Published 2017-12-15)
On averages of sums over regular integers modulo $n$