arXiv:1712.07434 [math.AP]AbstractReferencesReviewsResources
emoving Type II singularities off the axis for the 3D axisymmetric Euler equations
Published 2017-12-20Version 1
We prove local blow-up criterion for smooth axisymmetric solutions to the 3D incompressible Euler equation. If the vorticity satisfies $ \intl_{0}^{t_*} (t_*-t) \| \omega (t)\|_{ L^\infty(B(x_{ \ast}, R_0))} dt <+\infty$ for a ball $B(x_{ \ast}, R_0)$ away from the axis of symmetry, then there exists no singularity in the torus $T(x_*, R)$ generated by rotation of the ball $B(x_{ \ast}, R_0)$ around the axis. As an immediate consequence of this criterion, we find that there exists no singularity in the torus $T(x_*, R)$ if the vorticity satisfies the blow-up rate $ \|\o (t)\|_{L^\infty (B(x_{ \ast}, R_0) )}= O\left(\frac{1}{(t_*-t)^\gamma}\right)$ as $t\to t_*$, where $\gamma <2$ and $B(x_*, R_0)$ is off from the axis.