arXiv:1712.04875 [math.FA]AbstractReferencesReviewsResources
On the best constant in {G}affney inequality
Gyula Csato, Bernard Dacorogna, Swarnendu Sil
Published 2017-12-13Version 1
We discuss the value of the best constant in Gaffney inequality namely $$ \lVert \nabla \omega \rVert_{L^{2}}^{2}\leq C\left( \lVert d\omega\rVert_{L^{2}}^{2}+\lVert \delta\omega\rVert_{L^{2}% }^{2}+\lVert \omega\rVert_{L^{2}}^{2}\right) $$ when either $\nu\wedge\omega=0$ or $\nu\,\lrcorner\,\omega=0$ on $\partial\Omega.$
Journal: J. Funct. Anal. 274.2 (2018) pp. 461-503
Categories: math.FA
Keywords: best constant, gaffney inequality
Tags: journal article
Related articles: Most relevant | Search more
arXiv:0708.3924 [math.FA] (Published 2007-08-29)
Best constants for Lipschitz embeddings of metric spaces into c_0
arXiv:1706.06928 [math.FA] (Published 2017-06-21)
The best constant in the embedding of $W^{N,1}({\mathbb R}^N)$ into $L^\infty({\mathbb R}^N)$
arXiv:1103.6184 [math.FA] (Published 2011-03-31)
Rellich inequalities with weights