arXiv Analytics

Sign in

arXiv:1712.03620 [math.CO]AbstractReferencesReviewsResources

A Generalization of Schur's Theorem

Jon Henry Sanders

Published 2017-12-11Version 1

This paper is an excerpt from the author's 1968 PhD dissertation [Yale University, 1968] in which the (now) well-known result, commonly known as the Folkman-Rado-Sanders theorem, is proved. The proof uses (finite) alternating sums of integers and an 'iterated Ramsey theorem' in a way analogous to the proof of Schur's theorem using differences of integers and Ramsey's theorem for the coloring of the edges of a complete graph. The proof predates all others except J. Folkman, who based his proof on van der Waerden's theorem. The paper also contains the first published statement of the countable version of the theorem, which came to be misattributed to Graham and Rothschild, but predated their statement by three years.

Related articles: Most relevant | Search more
arXiv:1311.6291 [math.CO] (Published 2013-11-25, updated 2015-11-12)
A generalization of weight polynomials to matroids
arXiv:1406.4022 [math.CO] (Published 2014-06-16, updated 2015-06-26)
Some $q$-congruences for homogeneous and quasi-homogeneous multiple $q$-harmonic sums
arXiv:1310.0851 [math.CO] (Published 2013-10-02, updated 2014-04-04)
A generalization of Aztec diamond theorem, part I