arXiv Analytics

Sign in

arXiv:1712.01211 [math.NA]AbstractReferencesReviewsResources

A Unified Study of Continuous and Discontinuous Galerkin Methods

Qingguo Hong, Fei Wang, Shuonan Wu, Jinchao Xu

Published 2017-12-04Version 1

A unified study is presented in this paper for the design and analysis of different finite element methods (FEMs), including conforming and nonconforming FEMs, mixed FEMs, hybrid FEMs,discontinuous Galerkin (DG) methods, hybrid discontinuous Galerkin (HDG) methods and weak Galerkin (WG) methods. Both HDG and WG are shown to admit inf-sup conditions that hold uniformly with respect to both mesh and penalization parameters. In addition, by taking the limit of the stabilization parameters, a WG method is shown to converge to a mixed method whereas an HDG method is shown to converge to a primal method. Furthermore, a special class of DG methods, known as the mixed DG methods, is presented to fill a gap revealed in the unified framework.

Related articles: Most relevant | Search more
arXiv:1805.09670 [math.NA] (Published 2018-05-22)
Uniform Stability and Error Analysis for Some Discontinuous Galerkin Methods
arXiv:2312.16565 [math.NA] (Published 2023-12-27)
Discontinuous Galerkin methods for 3D-1D systems
arXiv:1209.2316 [math.NA] (Published 2012-09-11, updated 2013-04-14)
Discontinuous Galerkin Methods for Mass Transfer through Semi-Permeable Membranes