arXiv Analytics

Sign in

arXiv:1711.05384 [math.PR]AbstractReferencesReviewsResources

Normal Approximation by Stein's Method under Sublinear Expectations

Yongsheng Song

Published 2017-11-15Version 1

Peng (2008)(\cite{P08b}) proved the Central Limit Theorem under a sublinear expectation: \textit{Let $(X_i)_{i\ge 1}$ be a sequence of i.i.d random variables under a sublinear expectation $\hat{\mathbf{E}}$ with $\hat{\mathbf{E}}[X_1]=\hat{\mathbf{E}}[-X_1]=0$ and $\hat{\mathbf{E}}[|X_1|^3]<\infty$. Setting $W_n:=\frac{X_1+\cdots+X_n}{\sqrt{n}}$, we have, for each bounded and Lipschitz function $\varphi$, \[\lim_{n\rightarrow\infty}\bigg|\hat{\mathbf{E}}[\varphi(W_n)]-\mathcal{N}_G(\varphi)\bigg|=0,\] where $\mathcal{N}_G$ is the $G$-normal distribution with $G(a)=\frac{1}{2}\hat{\mathbf{E}}[aX_1^2]$, $a\in \mathbb{R}$.} In this paper, we shall give an estimate of the rate of convergence of this CLT by Stein's method under sublinear expectations: \textit{Under the same conditions as above, there exists $\alpha\in(0,1)$ depending on $\underline{\sigma}$ and $\overline{\sigma}$, and a positive constant $C_{\alpha, G}$ depending on $\alpha, \underline{\sigma}$ and $\overline{\sigma}$ such that \[\sup_{|\varphi|_{Lip}\le1}\bigg|\hat{\mathbf{E}}[\varphi(W_n)]-\mathcal{N}_G(\varphi)\bigg|\leq C_{\alpha,G}\frac{\hat{\mathbf{E}}[|X_1|^{2+\alpha}]}{n^{\frac{\alpha}{2}}},\] where $\overline{\sigma}^2=\hat{\mathbf{E}}[X_1^2]$, $\underline{\sigma}^2=-\hat{\mathbf{E}}[-X_1^2]>0$ and $\mathcal{N}_G$ is the $G$-normal distribution with \[G(a)=\frac{1}{2}\hat{\mathbf{E}}[aX_1^2]=\frac{1}{2}(\overline{\sigma}^2a^+-\underline{\sigma}^2a^-), \ a\in \mathbb{R}.\]}

Related articles: Most relevant | Search more
arXiv:0712.3696 [math.PR] (Published 2007-12-21)
Central limit theorem for sampled sums of dependent random variables
arXiv:1010.5361 [math.PR] (Published 2010-10-26, updated 2011-06-13)
Central limit theorem for multiplicative class functions on the symmetric group
arXiv:1205.0303 [math.PR] (Published 2012-05-02, updated 2014-05-10)
A central limit theorem for the zeroes of the zeta function