arXiv Analytics

Sign in

arXiv:1711.02325 [math.CO]AbstractReferencesReviewsResources

Congruences modulo powers of 5 for $k$-colored partitions

Dazhao Tang

Published 2017-11-07Version 1

Let $p_{-k}(n)$ enumerate the number of $k$-colored partitions of $n$. In this paper, we establish some infinite families of congruences modulo 25 for $k$-colored partitions. Furthermore, we prove some infinite families of Ramanujan-type congruences modulo powers of 5 for $p_{-k}(n)$ with $k=2, 6$, and $7$. For example, for all integers $n\geq0$ and $\alpha\geq1$, we prove that \begin{align*} p_{-2}\left(5^{2\alpha-1}n+\dfrac{7\times5^{2\alpha-1}+1}{12}\right) &\equiv0\pmod{5^{\alpha}} \end{align*} and \begin{align*} p_{-2}\left(5^{2\alpha}n+\dfrac{11\times5^{2\alpha}+1}{12}\right) &\equiv0\pmod{5^{\alpha+1}}. \end{align*}

Comments: 15 pages, submitted to J. Number Theory
Categories: math.CO
Subjects: 05A17, 11P83
Related articles: Most relevant | Search more
arXiv:2102.03486 [math.CO] (Published 2021-02-06)
Stanley--Elder--Fine theorems for colored partitions
arXiv:2407.07891 [math.CO] (Published 2024-07-10)
A proposed crank for $(k+j)$-colored partitions, with $j$ colors having distinct parts
arXiv:1709.02584 [math.CO] (Published 2017-09-08)
New congruences for broken $k$-diamond partitions