arXiv Analytics

Sign in

arXiv:1710.05217 [math.CA]AbstractReferencesReviewsResources

Modular inequalities for the maximal operator in variable Lebesgue spaces

David Cruz-Uribe, Giovanni Di Fratta, Alberto Fiorenza

Published 2017-10-14Version 1

A now classical result in the theory of variable Lebesgue spaces due to Lerner [A. K. Lerner, On modular inequalities in variable $L^p$ spaces, Archiv der Math. 85 (2005), no. 6, 538-543] is that a modular inequality for the Hardy-Littlewood maximal function in $L^{p(\cdot)}(\mathbb{R}^n)$ holds if and only if the exponent is constant. We generalize this result and give a new and simpler proof. We then find necessary and sufficient conditions for the validity of the weaker modular inequality \[ \int_\Omega Mf(x)^{p(x)}\,dx \ \leq c_1 \int_\Omega |f(x)|^{q(x)}\,dx + c_2, \] where $c_1,\,c_2$ are non-negative constants and $\Omega$ is any measurable subset of $\mathbb{R}^n$. As a corollary we get sufficient conditions for the modular inequality \[ \int_\Omega |Tf(x)|^{p(x)}\,dx \ \leq c_1 \int_\Omega |f(x)|^{q(x)}\,dx + c_2, \] where $T$ is any operator that is bounded on $L^p(\Omega)$, $1<p<\infty$.

Related articles: Most relevant | Search more
arXiv:1612.00968 [math.CA] (Published 2016-12-03)
Characterization of Lipschitz spaces via commutators of the Hardy-Littlewood maximal function
arXiv:1811.11032 [math.CA] (Published 2018-11-27)
Restricted testing for the Hardy-Littlewood maximal function
arXiv:1901.01011 [math.CA] (Published 2019-01-04)
The frequency function and its connections to the Lebesgue points and the Hardy-Littlewood maximal function