arXiv:1710.04932 [quant-ph]AbstractReferencesReviewsResources
Co-Processors for Quantum Devices
Published 2017-10-13Version 1
Quantum devices, from simple fixed-function tools to the ultimate goal of a universal quantum computer, will require high quality, frequent repetition of a small set of core operations, such as the preparation of entangled states. These tasks are perfectly suited to realisation by a co-processor or supplementary instruction set, as is common practice in modern CPUs. In this paper, we present two quintessentially quantum co-processor functions: production of a GHZ state, and implementation of optimal universal (asymmetric) quantum cloning. Both are based on the evolution of a fixed Hamiltonian. We introduce a new numerical technique for deriving the parameters of these Hamiltonians based on the numerical integration of Toda-like flows.