arXiv Analytics

Sign in

arXiv:1710.04124 [math.FA]AbstractReferencesReviewsResources

Pettis integrability of fuzzy mappings with values in arbitrary Banach spaces

L. Di Piazza, V. Marraffa

Published 2017-10-11Version 1

In this paper we study the Pettis integral of fuzzy mappings in arbitrary Banach spaces. We present some properties of the Pettis integral of fuzzy mappings and we give conditions under which a scalarly integrable fuzzy mapping is Pettis integrable.

Related articles: Most relevant | Search more
arXiv:math/0301269 [math.FA] (Published 2003-01-23)
Minimal vectors in arbitrary Banach spaces
arXiv:1912.01845 [math.FA] (Published 2019-12-04)
Relations among Gauge and Pettis integrals for $cwk(X)$-valued multifunctions
arXiv:1311.7575 [math.FA] (Published 2013-11-29)
Lipschitz $\left(\mathfrak{m}^L\left(s;q\right),p\right)$ and $\left(p,\mathfrak{m}^L\left(s;q\right)\right)-$summing maps