arXiv Analytics

Sign in

arXiv:1710.03230 [astro-ph.GA]AbstractReferencesReviewsResources

The MOSDEF Survey: Broad Emission Lines at z=1.4-3.8

William R. Freeman, Brian Siana, Mariska Kriek, Alice E. Shapley, Naveen Reddy, Alison L. Coil, Bahram Mobasher, Alexander L. Muratov, Mojegan Azadi, Gene Leung, Ryan Sanders, Irene Shivaei, Sedona H. Price, Laura DeGroot, Dušan Kereš

Published 2017-10-09Version 1

We present results from the MOSFIRE Deep Evolution Field (MOSDEF) survey on broad flux from the nebular emission lines H$\alpha$, [NII], [OIII], H$\beta$, and [SII]. The sample consists of 127 star-forming galaxies at $1.37 < z < 2.61$ and 84 galaxies at $2.95 < z < 3.80$. We decompose the emission lines using narrow ($\text{FWHM} < 275 \ \text{km s}^{-1}$) and broad ($\text{FWHM} > 300 \ \text{km s}^{-1}$) Gaussian components for individual galaxies and stacks. Broad emission is detected at $>3\sigma$ in $<10$% of galaxies and the broad flux accounts for 10-70% of the total flux. We find a slight increase in broad to narrow flux ratio with mass but note that we cannot reliably detect broad emission with $\text{FWHM} < 275 \ \text{km s}^{-1}$, which may be significant at low masses. Notably, there is a correlation between higher signal-to-noise (S/N) spectra and a broad component detection indicating a S/N dependence in our ability to detect broad flux. When placed on the N2-BPT diagram ([OIII]/H$\beta$ vs. [NII]/H$\alpha$) the broad components of the stacks are shifted towards higher [OIII]/H$\beta$ and [NII]/$\alpha$ ratios compared to the narrow component. We compare the location of the broad components to shock models and find that the broad component could be due to shocks, but we do not rule out other possibilities such as the presence of an AGN. We estimate the mass loading factor (mass outflow rate/star formation rate) assuming the broad component is a photoionized outflow and find that the mass loading factor increases as a function of mass which agrees with previous studies. We show that adding emission from shocked gas to $z\sim0$ SDSS spectra shifts galaxies towards the location of $z\sim2$ galaxies on several emission line diagnostic diagrams.

Related articles: Most relevant | Search more
arXiv:1805.09619 [astro-ph.GA] (Published 2018-05-24)
Microlensing and Intrinsic Variability of the Broad Emission Lines of Lensed Quasars
C. Fian et al.
arXiv:2008.04327 [astro-ph.GA] (Published 2020-08-10)
The MOSDEF Survey: Differences in SFR and Metallicity for Morphologically-Selected Mergers at z~2
arXiv:2206.05293 [astro-ph.GA] (Published 2022-06-10)
The MOSDEF Survey: A Remarkable z=1.89 Merger