arXiv Analytics

Sign in

arXiv:1709.09672 [quant-ph]AbstractReferencesReviewsResources

Precision thermometry and the quantum speed limit

Steve Campbell, Marco G. Genoni, Sebastian Deffner

Published 2017-09-27Version 1

We assess precision thermometry for an arbitrary single quantum system. For a $d$-dimensional harmonic system we show that the gap sets a single temperature that can be optimally estimated. Furthermore, we establish a simple linear relationship between the gap and this temperature, and show that the precision exhibits a quadratic relationship. We extend our analysis to explore systems with arbitrary spectra, showing that exploiting anharmonicity and degeneracy can greatly enhance the precision of thermometry. Finally, we critically assess the dynamical features of two thermometry protocols for a two level system. By calculating the quantum speed limit we find that, despite the gap fixing a preferred temperature to probe, there is no evidence of this emerging in the dynamical features.

Related articles: Most relevant | Search more
arXiv:2002.11147 [quant-ph] (Published 2020-02-25)
Analysis of lower bounds for quantum control times and their relation to the quantum speed limit
arXiv:2506.19228 [quant-ph] (Published 2025-06-24)
Distributing entanglement at the quantum speed limit in Rydberg chains
arXiv:1209.1737 [quant-ph] (Published 2012-09-08, updated 2013-03-04)
Quantum speed limits in open system dynamics