arXiv Analytics

Sign in

arXiv:1709.01481 [math.AG]AbstractReferencesReviewsResources

Gromov-Witten theory of elliptic fibrations: Jacobi forms and holomorphic anomaly equations

Georg Oberdieck, Aaron Pixton

Published 2017-09-05Version 1

We conjecture that the relative Gromov-Witten potentials of elliptic fibrations are (cycle-valued) lattice quasi-Jacobi forms and satisfy a holomorphic anomaly equation. We prove the conjecture for the rational elliptic surface in all genera and curve classes numerically. The generating series are quasi-Jacobi forms for the lattice $E_8$. We also show the compatibility of the conjecture with the degeneration formula. As Corollary we deduce that the Gromov-Witten potentials of the Schoen Calabi-Yau threefold (relative to $\mathbb{P}^1$) are $E_8 \times E_8$ quasi-bi-Jacobi forms and satisfy a holomorphic anomaly equation. This yields a partial verification of the BCOV holomorphic anomaly equation for Calabi-Yau threefolds. For abelian surfaces the holomorphic anomaly equation is proven numerically in primitive classes. The theory of lattice quasi-Jacobi forms is reviewed. In the Appendix the conjectural holomorphic anomaly equation is expressed as a matrix action on the space of (generalized) cohomological field theories. The compatibility of the matrix action with the Jacobi Lie algebra is proven. Holomorphic anomaly equations for K3 fibrations are discussed in an example.

Related articles: Most relevant | Search more
arXiv:1111.0017 [math.AG] (Published 2011-10-31, updated 2012-04-25)
On Hirzebruch invariants of elliptic fibrations
arXiv:math/9810173 [math.AG] (Published 1998-10-30)
Hodge integrals and Gromov-Witten theory
arXiv:1309.1150 [math.AG] (Published 2013-09-04)
Geometric Quantization with Applications to Gromov-Witten Theory