arXiv:1709.00454 [math.CO]AbstractReferencesReviewsResources
A directed graph generalization of chromatic quasisymmetric functions
Published 2017-09-01Version 1
Stanley defined the chromatic symmetric function of a graph, and Shareshian and Wachs introduced a refinement, namely the chromatic quasisymmetric function of a labeled graph. In this paper, we define the chromatic quasisymmetric function of a directed graph, which agrees with the Shareshian-Wachs definition in the acyclic case. We give an F-basis expansion for all digraphs in terms of a permutation statistic, which we call G-descents. We use this expansion to derive a p-positivity formula for all digraphs with symmetric chromatic quasisymmetric functions. We show that the chromatic quasisymmetric functions of a certain class of digraphs, called circular indifference digraphs, have symmetric coefficients. We present an e-positivity formula for the chromatic quasisymmetric function of the directed cycle, which is a t-analog of a result of Stanley. Lastly, we give a generalization of the Shareshian-Wachs e-positivity conjecture to a larger class of digraphs.