arXiv Analytics

Sign in

arXiv:1708.09837 [math.CA]AbstractReferencesReviewsResources

Nikolskii constants for polynomials on the unit sphere

Feng Dai, Dmitry Gorbachev, Sergey Tikhonov

Published 2017-08-31Version 1

This paper studies the asymptotic behavior of the exact constants of the Nikolskii inequalities for the space $\Pi_n^d$ of spherical polynomials of degree at most $n$ on the unit sphere $\mathbb{S}^d\subset \mathbb{R}^{d+1}$ as $n\to\infty$. It is shown that for $0<p<\infty$, \[ \lim_{n\to \infty} \sup\Bigl\{\frac{\|P\|_{L^\infty(\mathbb{S}^d)}}{n^{\frac dp}\|P\|_{L^p(\mathbb{S}^d)}}:\ \ P\in\Pi_n^d\Bigr\} =\sup\Bigl\{ \frac{\|f\|_{L^\infty(\mathbb{R}^{d})}}{\|f\|_{L^p(\mathbb{R}^d)}}:\ \ f\in\mathcal{E}_p^d \Bigr\}, \] where $\mathcal{E}_p^d$ denotes the space of all entire functions of spherical exponential type at most $1$ whose restrictions to $\mathbb{R}^d$ belong to the space $L^p(\mathbb{R}^d)$, and it is agreed that $0/0=0$. It is further proved that for $0<p<q<\infty$, \[ \liminf_{n\to \infty} \sup\Bigl\{\frac{\|P\|_{L^q(\mathbb{S}^d)}}{n^{d(1/p-1/q)}\|P\|_{L^p(\mathbb{S}^d)}}:\ \ P\in\Pi_n^d\Bigr\} \ge \sup\Bigl\{ \frac{\|f\|_{L^q(\mathbb{R}^{d})}}{\|f\|_{L^p(\mathbb{R}^d)}}:\ \ f\in\mathcal{E}_p^d\Bigr\}. \] These results extend the recent results of Levin and Lubinsky for trigonometric polynomials on the unit circle. The paper also determines the exact value of the Nikolskii constant for nonnegative functions with $p=1$ and $q=\infty$: $$\lim_{n\to \infty} \sup_{0\leq P\in\Pi_n^d}\frac{\|P\|_{L^\infty(\mathbb{S}^d)}}{\|P\|_{L^1(\mathbb{S}^d)}} =\sup_{0\leq f\in\mathcal{E}_1^d}\frac{\|f\|_{L^\infty(\mathbb{R}^{d})}}{\|f\|_{L^1(\mathbb{R}^d)}} =\frac1{4^d \pi^{d/2}\Gamma(d/2+1)}.$$

Related articles: Most relevant | Search more
arXiv:0706.0756 [math.CA] (Published 2007-06-06)
Boundedness of projection operators and CesĂ ro means in weighted $L^p$ space on the unit sphere
arXiv:0904.0397 [math.CA] (Published 2009-04-02)
Asymptotic behavior of coupled dynamical systems with multiscale aspects
arXiv:math/9709223 [math.CA] (Published 1997-09-21)
Correlation between pole location and asymptotic behavior for Painlevé I solutions