arXiv Analytics

Sign in

arXiv:1708.02186 [math.PR]AbstractReferencesReviewsResources

On the strong Markov property for stochastic differential equations driven by $G$-Brownian motion

Mingshang Hu, Xiaojun Ji, Guomin Liu

Published 2017-08-07Version 1

In this paper we study the stochastic differential equations driven by $G$-Brownian motion ($G$-SDEs for short). We extend the notion of conditional $G$-expectation from deterministic time to the more general optional time situation. Then, via this conditional expectation, we develop the strong Markov property for $G$-SDEs. In particular, we obtain the strong Markov property for $G$-Brownian motion. Some applications including the reflection principle for $G$-Brownian motion are also provided.

Related articles: Most relevant | Search more
arXiv:0802.1152 [math.PR] (Published 2008-02-08, updated 2009-12-09)
Hiding a drift
arXiv:1208.6399 [math.PR] (Published 2012-08-31, updated 2013-02-13)
Brownian motion in the quadrant with oblique repulsion from the sides
arXiv:math/0308193 [math.PR] (Published 2003-08-20)
A central limit theorem for Gibbs measures relative to Brownian motion