arXiv Analytics

Sign in

arXiv:1708.01905 [math.NT]AbstractReferencesReviewsResources

Sumsets contained in sets of upper Banach density 1

Melvyn B. Nathanson

Published 2017-08-06Version 1

Every set $A$ of positive integers with upper Banach density 1 contains an infinite sequence of pairwise disjoint subsets $(B_i)_{i=1}^{\infty}$ such that $B_i$ has upper Banach density 1 for all $i \in \mathbf{N}$ and $\sum_{i\in I} B_i \subseteq A$ for every nonempty finite set $I$ of positive integers.

Related articles: Most relevant | Search more
arXiv:math/0604055 [math.NT] (Published 2006-04-04)
Density of sets of natural numbers and the Levy group
arXiv:1206.2148 [math.NT] (Published 2012-06-11, updated 2012-07-28)
Sumsets in primes containing almost all even positive integers
arXiv:2401.04699 [math.NT] (Published 2024-01-09)
Extended inverse theorems for $h$-fold sumsets in integers