arXiv Analytics

Sign in

arXiv:1708.01039 [cond-mat.dis-nn]AbstractReferencesReviewsResources

Nonmonotonous classical magneto-conductivity of a two-dimensional electron gas in a disordered array of obstacles

N. H. Siboni, J. Schluck, K. Pierz, H. W. Schumacher, D. Kazazis, J. Horbach, T. Heinzel

Published 2017-08-03Version 1

Magnetotransport measurements in combination with molecular dynamics (MD) simulations on two-dimensional disordered Lorentz gases in the classical regime are reported. In quantitative agreement between experiment and simulation, the magnetoconductivity displays a pronounced peak as a function of perpendicular magnetic field $B$ which cannot be explained in the framework of existing kinetic theories. We show that this peak is linked to the onset of a directed motion of the electrons along the contour of the disordered obstacle matrix when the cyclotron radius becomes smaller than the size of the obstacles. This directed motion leads to transient superdiffusive motion and strong scaling corrections in the vicinity of the insulator-to-conductor transitions of the Lorentz gas.

Related articles: Most relevant | Search more
arXiv:cond-mat/0403057 (Published 2004-03-01)
Spin-orbit-induced correlations of the local density of states in two-dimensional electron gas
arXiv:cond-mat/0512087 (Published 2005-12-05, updated 2005-12-14)
Diffusion and ballistic contributions of the interaction correction to the conductivity of a two-dimensional electron gas
arXiv:cond-mat/0507687 (Published 2005-07-28)
Phononless thermally activated transport through a disordered array of quantum wires