arXiv Analytics

Sign in

arXiv:1707.09937 [math.GT]AbstractReferencesReviewsResources

Superinjective Simplicial Maps of the Two-sided Curve Complexes on Nonorientable Surfaces

Elmas Irmak, Luis Paris

Published 2017-07-31Version 1

Let $N$ be a compact, connected, nonorientable surface of genus $g$ with $n$ boundary components with $g \geq 5$, $n \geq 0$. Let $\mathcal{T}(N)$ be the two-sided curve complex of $N$. If $\lambda :\mathcal{T}(N) \rightarrow \mathcal{T}(N)$ is a superinjective simplicial map, then there exists a homeomorphism $h : N \rightarrow N$ unique up to isotopy such that $H(\alpha) = \lambda(\alpha)$ for every vertex $\alpha$ in $\mathcal{T}(N)$ where $H=[h]$.

Related articles: Most relevant | Search more
arXiv:0908.2972 [math.GT] (Published 2009-08-20, updated 2011-11-20)
Superinjective Simplicial Maps of the Complexes of Curves on Nonorientable Surfaces
arXiv:1112.1617 [math.GT] (Published 2011-12-07, updated 2012-04-04)
Simplicial Maps of the Complexes of Curves on Nonorientable Surfaces
arXiv:1203.4271 [math.GT] (Published 2012-03-19, updated 2012-03-28)
Injective Simplicial Maps of the Complexes of Curves of Nonorientable Surfaces