arXiv:1707.07740 [math.RT]AbstractReferencesReviewsResources
On the Humphreys conjecture on support varieties of tilting modules
Pramod N. Achar, William Hardesty, Simon Riche
Published 2017-07-24Version 1
Let $G$ be a simply-connected semisimple algebraic group over an algebraically closed field of characteristic $p$, assumed to be larger than the Coxeter number. The "support variety" of a $G$-module $M$ is a certain closed subvariety of the nilpotent cone of $G$, defined in terms of cohomology for the first Frobenius kernel $G_1$. In the 1990s, Humphreys proposed a conjectural description of the support varieties of tilting modules; this conjecture has been proved for $G = \mathrm{SL}_n$ in earlier work of the second author. In this paper, we show that for any $G$, the support variety of a tilting module always contains the variety predicted by Humphreys, and that they coincide (i.e., the Humphreys conjecture is true) when $p$ is sufficiently large. We also prove variants of these statements involving "relative support varieties."