arXiv Analytics

Sign in

arXiv:1707.06536 [math.AC]AbstractReferencesReviewsResources

Some results on the annihilators and attached primes of local cohomology modules

Ali Atazadeh, Monireh Sedghi, Reza Naghipour

Published 2017-07-19Version 1

Let $(R, \frak m)$ be a local ring and $M$ a finitely generated $R$-module. It is shown that if $M$ is relative Cohen-Macaulay with respect to an ideal $\frak a$ of $R$, then $\text{Ann}_R(H_{\mathfrak{a}}^{\text{cd}(\mathfrak{a}, M)}(M))=\text{Ann}_RM/L=\text{Ann}_RM$ and $\text{Ass}_R(R/\text{Ann}_RM)\subseteq \{\mathfrak{p} \in \text{Ass}_R M|\,{\rm cd}(\mathfrak{a}, R/\mathfrak{p})=\text{cd}(\mathfrak{a}, M)\},$ where $L$ is the largest submodule of $M$ such that ${\rm cd}(\mathfrak{a}, L)< {\rm cd}(\mathfrak{a}, M)$. We also show that if $H^{\dim M}_{\mathfrak{a}}(M)=0$, then $\text{Att}_R(H^{\dim M-1}_{\mathfrak{a}}(M))= \{\mathfrak{p} \in \text{Supp} (M)|\,{\rm cd}(\mathfrak{a}, R/\mathfrak{p})=\dim M-1\},$ and so the attached primes of $H^{\dim M-1}_{\mathfrak{a}}(M)$ depends only on $\text{Supp} (M)$. Finally, we prove that if $M$ is an arbitrary module (not necessarily finitely generated) over a Noetherian ring $R$ with ${\rm cd}(\mathfrak{a}, M)={\rm cd}(\mathfrak{a}, R/\text{Ann}_RM)$, then $\text{Att}_R(H^{{\rm cd}(\mathfrak{a}, M)}_{\mathfrak{a}}(M))\subseteq\{\mathfrak{p} \in V(\text{Ann}_RM)|\,{\rm cd}(\mathfrak{a}, R/\mathfrak{p})={\rm cd}(\mathfrak{a}, M)\}.$ As a consequence of this it is shown that if $\dim M=\dim R$, then $\text{Att}_R(H^{\dim M}_{\mathfrak{a}}(M))\subseteq\{\mathfrak{p} \in \text{Ass}_R M|\,{\rm cd}(\mathfrak{a}, R/\mathfrak{p})=\dim M\}.$

Comments: 13 pages, to appear in Archiv der Mathematik. arXiv admin note: substantial text overlap with arXiv:1312.1253
Categories: math.AC
Subjects: 13D45, 14B15, 13E05
Related articles: Most relevant | Search more
arXiv:1312.1253 [math.AC] (Published 2013-12-04, updated 2014-03-31)
On the annihilators and attached primes of top local cohomology modules
arXiv:math/0501063 [math.AC] (Published 2005-01-05)
Attached primes of the top local cohomology modules with respect to an ideal (II)
arXiv:1301.1015 [math.AC] (Published 2013-01-06, updated 2014-07-18)
Some results on the local cohomology modules with respect to a pair of ideals