arXiv:1707.01799 [math.AT]AbstractReferencesReviewsResources
On topological cyclic homology
Thomas Nikolaus, Peter Scholze
Published 2017-07-06Version 1
Topological cyclic homology is a refinement of Connes' cyclic homology which was introduced by B\"okstedt--Hsiang--Madsen in 1993 as an approximation to algebraic $K$-theory. There is a trace map from algebraic $K$-theory to topological cyclic homology, and a theorem of Dundas--Goodwillie--McCarthy asserts that this induces an equivalence of relative theories for nilpotent immersions, which gives a way for computing $K$-theory in various situations. The construction of topological cyclic homology is based on genuine equivariant homotopy theory, the use of explicit point-set models, and the elaborate notion of a cyclotomic spectrum. The goal of this paper is to revisit this theory using only homotopy-invariant notions. In particular, we give a new construction of topological cyclic homology. This is based on a new definition of the $\infty$-category of cyclotomic spectra: We define a cyclotomic spectrum to be a spectrum $X$ with $S^1$-action (in the most naive sense) together with $S^1$-equivariant maps $\varphi_p: X\to X^{tC_p}$ for all primes $p$. Here $X^{tC_p}=\mathrm{cofib}(\mathrm{Nm}: X_{hC_p}\to X^{hC_p})$ is the Tate construction. On bounded below spectra, we prove that this agrees with previous definitions. As a consequence, we obtain a new and simple formula for topological cyclic homology.