arXiv:1706.09638 [math.LO]AbstractReferencesReviewsResources
Compact Cardinals and Eight Values in Cichoń's Diagram
Jakob Kellner, Anda Tănasie, Fabio Tonti
Published 2017-06-29Version 1
Assuming three strongly compact cardinals, it is consistent that \[ \aleph_1 < \mathrm{add}(\mathrm{null}) < \mathrm{cov}(\mathrm{null}) < \mathfrak{b} < \mathfrak{d} < \mathrm{non}(\mathrm{null}) < \mathrm{cof}(\mathrm{null}) < 2^{\aleph_0}.\] Under the same assumption, it is consistent that \[ \aleph_1 < \mathrm{add}(\mathrm{null}) < \mathrm{cov}(\mathrm{null}) < \mathrm{non}(\mathrm{meager}) < \mathrm{cov}(\mathrm{meager}) < \mathrm{non}(\mathrm{null}) < \mathrm{cof}(\mathrm{null}) < 2^{\aleph_0}.\]
Related articles: Most relevant | Search more
arXiv:1504.04192 [math.LO] (Published 2015-04-16)
The left side of Cichoń's diagram
Creature forcing and five cardinal characteristics in Cichoń's diagram
arXiv:1904.00165 [math.LO] (Published 2019-03-30)
A note on "Another ordering of the ten cardinal characteristics in Cichoń's Diagram" and further remarks