arXiv Analytics

Sign in

arXiv:1706.08474 [cs.CV]AbstractReferencesReviewsResources

Paying More Attention to Saliency: Image Captioning with Saliency and Context Attention

Marcella Cornia, Lorenzo Baraldi, Giuseppe Serra, Rita Cucchiara

Published 2017-06-26Version 1

Image captioning has been recently gaining a lot of attention thanks to the impressive achievements shown by deep captioning architectures, which combine Convolutional Neural Networks to extract image representations, and Recurrent Neural Networks to generate the corresponding captions. At the same time, a significant research effort has been dedicated to the development of saliency prediction models, which can predict human eye fixations. Despite saliency information could be useful to condition an image captioning architecture, by providing an indication of what is salient and what is not, no model has yet succeeded in effectively incorporating these two techniques. In this work, we propose an image captioning approach in which a generative recurrent neural network can focus on different parts of the input image during the generation of the caption, by exploiting the conditioning given by a saliency prediction model on which parts of the image are salient and which are contextual. We demonstrate, through extensive quantitative and qualitative experiments on large scale datasets, that our model achieves superior performances with respect to different image captioning baselines with and without saliency.

Comments: Submitted to ACM Transactions on Multimedia Computing, Communications and Applications
Categories: cs.CV
Related articles: Most relevant | Search more
arXiv:1912.08226 [cs.CV] (Published 2019-12-17)
M$^2$: Meshed-Memory Transformer for Image Captioning
arXiv:2210.10914 [cs.CV] (Published 2022-10-19)
Prophet Attention: Predicting Attention with Future Attention for Improved Image Captioning
arXiv:1707.07998 [cs.CV] (Published 2017-07-25)
Bottom-Up and Top-Down Attention for Image Captioning and VQA