arXiv Analytics

Sign in

arXiv:1706.03613 [astro-ph.HE]AbstractReferencesReviewsResources

Early light curves for Type Ia supernova explosion models

U. M. Noebauer, M. Kromer, S. Taubenberger, P. Baklanov, S. Blinnikov, E. Sorokina, W. Hillebrandt

Published 2017-06-12Version 1

Upcoming high-cadence transient survey programs will produce a wealth of observational data for Type Ia supernovae. These data sets will contain numerous events detected very early in their evolution, shortly after explosion. Here, we present synthetic light curves, calculated with the radiation hydrodynamical approach STELLA for a number of different explosion models, specifically focussing on these first few days after explosion. We show that overall the early light curve evolution is similar for most of the investigated models. Characteristic imprints are induced by radioactive material located close to the surface. However, these are very similar to the signatures expected from ejecta-CSM or ejecta-companion interaction. Apart from the pure deflagration explosion models, none of our synthetic light curves exhibit the commonly assumed power-law rise. We demonstrate that this can lead to substantial errors in the determination of the time of explosion. In summary, we illustrate with our calculations that even with very early data an identification of specific explosion scenarios is challenging, if only photometric observations are available.

Comments: 13 pages, 13 figures, 3 tables, submitted to MNRAS
Categories: astro-ph.HE
Related articles: Most relevant | Search more
arXiv:2306.07116 [astro-ph.HE] (Published 2023-06-12)
Nebular spectra from Type Ia supernova explosion models compared to JWST observations of SN 2021aefx
arXiv:1803.03646 [astro-ph.HE] (Published 2018-03-09)
Aspherical Supernovae: Effects on Early Light Curves
arXiv:1503.07002 [astro-ph.HE] (Published 2015-03-24)
Polarisation spectral synthesis for Type Ia supernova explosion models