arXiv Analytics

Sign in

arXiv:1705.10893 [math.CO]AbstractReferencesReviewsResources

Asymptotics of the spectral radius for directed Chung-Lu random graphs with community structure

David Burstein

Published 2017-05-30Version 1

The spectral radius of the adjacency matrix can impact both algorithmic efficiency as well as the stability of solutions to an underlying dynamical process. Although much research has considered the distribution of the spectral radius for undirected random graph models, as symmetric adjacency matrices are amenable to spectral analysis, very little work has focused on directed graphs. Consequently, we provide novel concentration results for the spectral radius of the directed Chung-Lu random graph model. We emphasize that our concentration results are applicable both asymptotically and to networks of finite size. Subsequently, we extend our concentration results to a generalization of the directed Chung-Lu model that allows for community structure.

Comments: 59 pages, 5 figures
Categories: math.CO, cs.DM
Subjects: 05C20, 05C50, 05C80
Related articles: Most relevant | Search more
arXiv:1609.00835 [math.CO] (Published 2016-09-03)
On the $A_α$-spectra of trees
arXiv:0903.5353 [math.CO] (Published 2009-03-31)
Spectral radius and Hamiltonicity of graphs
arXiv:1309.0217 [math.CO] (Published 2013-09-01, updated 2014-07-20)
Spectral radius and Hamiltonian properties of graphs